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ABSTRA RNA EXPRESSED REGION VARIABILITY RNA DISJOINT EXON VARIABILITY

RNA-sequencing (RNA-seq) is a high-throughput method for
quantifying gene expression levels that is dependent on high-
quality RNA. We used RNA-seq data to explore expression profiles
in various brain tissues and to address the effect of confounding
caused by RNA quality differences.

First, we assessed RNA expression variability across brain regions
through analysis of Genotype-Tissue Expression (GTEx) project
data. We computed the mean base-pair level coverage for all brain
samples in GTEx and for each of the brain sub-tissues in the
dataset using data from the recount2 project (Collado-Torres et al.
2017c, Ellis et al. 2017). We noted differences in the mean
expressed region widths in the overall brain compared to sub-
tissues at smaller cutoff values. We then compared the width
distribution of known exons between the overall brain and the
various sub-tissues.

EXPRESSION PROFILES IN GTEx DA

To examine RNA expression variability across brain regions, we first
looked at expressed regions defined by a global cutoff.

We computed mean base-pair level coverage for all brain samples
and for each of the 13 brain sub-tissues in GTEx using data from
recount 2. Reads were scaled by 40 million reads of 100 base-pairs.
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Recount2 contains gene, exon, exon-exon junction, and expressed
region data. The data is available as
RangedSummarizedExperiment objects that can be accessed by
downloading and loading them in an R session.
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Using GTEx data, we identified mean expressed region width in overall
brain samples and samples from 11 sub-tissues.
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We examined the effect of outliers on the observed differences in
mean expressed region width in sub-tissues compared to overall brain
samples.
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We assessed if the differences in mean expressed regions persisted
when comparing the percent of the genome expressed in overall brain
and sub-tissues.
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We compared the width distribution of annotated exons in recount2
using GTEx data samples for the overall brain and 13 subtissues.
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We examined the effect of outliers on annotated exons in overall brain
and sub-tissue samples.
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We assessed the percent of the genome that were annotated exons in
overall brain samples and the individual sub-tissues.
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RNA QUALITY CONFOUNDING

To assess the effects of confounding, we will extend the quality
surrogate variable analysis (qSVA) algorithm (Jaffe et al. 2017) and
perform a cross-region analysis of RNA-quality tissue in a case-control
study, comparing degradation of tissue in patients with schizophrenia to
controls using BrainSeq consortium data. Applying this method, we will
identify and measure transcript features that are sensitive to tissue
degradation in a differential expression degradation dataset, create
factors to control for RNA quality confounding in an independent private
dataset, BrainSeq, and assess the performance of the modified qSVA
algorithm.
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Y = a+ B Dx +yregion + 6Dx * region + € qSVA

SUMMARY

We explored RNA expression variability across brain regions
through the analysis of Genotype-Tissue Expression (GTEx) project
data. Upon noticing pattern differences comparing overall brain
samples to sub-tissues, we used annotated exon expression data in
recount? to explore these differences further. Taken together, these
results suggest the need to determine an optimal cut off that is
specific to each tissue, to ensure minimal inclusion of noise,
particularly at lower cut offs.

We are now looking to assess the effect of RNA quality confounding
in private data, by performing cross-region brain analyses of RNA-
quality tissue, comparing schizophrenic brains to control brains in
BrainSeq consortium data. Our initial analysis will include two brain
regions that are well-characterized as altered in schizophrenic
patients, the dorsolateral prefrontal cortex (DLPFC) and the
hippocampus.
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